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SOME QUESTIONS INVOLVED IN THE SOLUTION OF INVERSE 

PROBLEMS IN HEAT CONDUCTION AND AUTOMATED DATA 

PROCESSING IN THERMOPHYSICAL INVESTIGATIONS 

O. M. Alifanov UDC 536.24 

We consider the problem of constructing systems for the automated processing of thermophysical information 
and methods for the solution of inverse boundary-value problems in heat conduction. 

I. The automation of information processing is today one of the most important methods for increasing the 
efficiency of scientific investigations and design work. This problem becomes a crucial one in thermophysical investigations 
closely connected with the production of new specimens of technology, particularly on the thermal design and experimental 
trials of modern aircraft and their component assemblies. 

We can distinguish three main classes of problems in the thermal design of machines and assemblies which clearly 
require the automation of information processing: 

a) the choice of design solutions and the optimization of the parameters of thermally stressed assemblies and 
systems for maintaining the thermal regime; 

b) the choice and identification of mathematical models of the heat-exchange processes being investigated; 

c) the processing of the results of experimental investigations and of thermal tests carried out on test stands and 
under natural conditions. 

Although these problems differ from one another, they have important features in common from the viewpoint of 
formulating and realizing solutions. In the first place, most of them can be stated as extremum problems, and the same 
numerical optimization methods can be used effectively for their solution. In the second place, all three of these classes of 
problems are connected with the solution of direct and inverse heat-exchange problems of the same type. Ira the third place, 
they are usually nonlinear and require iterative corrections of the solutions as the desired quantities are optimized. As a 
rule, the problems require a great deal of work, and their solution by digital-computing methods consumes a large amount 
of machine time. 

There are two obvious ways to reduce the amount of time spent on information processing - to devise efficient 
computation methods and to improve computer hardware. The automating of information-processing systems is a natural 
combination of these two lines of work. For the purposes of thermophysical research, this means automated systems of 
thermal design and automated processing of the data of thermal tests. The solution of problems in these two types of 
systems involves different types of logic, but the algorithmic modules in the software libraries used for them may be the 
same. The general requirements imposed on' the computer hardware (speed of action, memory, service devices) and on the 
principles of construction of such systems (in particular, requirements imposed with respect to the active integration of the 
operator with the system) also are roughly the same. 

From the foregoing we may draw a preliminary conclusion which is confirmed by a more complete analysis of the 
question: in many cases it is desirable to construct unified automated systems intended both for processing the data of the 
thermal experiment and for optimizing the design solutions and parameters of the thermally located assemblies and the 
thermal protection devices. The algorithm library in such an integrated system wilt contain general algorithms for solving 
direct and inverse problems in heat exchange, general procedures for iterative methods of optimization, etc. At the same 
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time, the logical schemes for processing information, which consist, in particular, in the choice ol apecific sequences of 
algorithms, will, of course, be different. 

We referred above to the large amount of work required for solving thermophysical problems on digital computers. 
Investigators strive to set up a more exact thermal model of the object or process under investigation by taking account of 
various nonlinearities, of the fact that heat propagation is not one-dimensional, of the transition to a consideration of a 
more complex region of space variables, and they also strive to solve the problems more precisely, e.g., to use smaller steps 
in the finite-difference approximation; all of this leads to a sharp and sometimes unacceptably large increase in the amount 
of computation work. This situation is due to the very principle of operation of digital computers, in which all the variables 
are discrete and the information is processed sequentially - at any instant of time, only one operation or a limited number 
of operations can be carried out. Therefore, the total time required for solving a complex thermophysical problem turns 
out to be very large, and the solution process is much slower than the real physical phenomenon. 

A substantial reduction in the amount of machine time used for the processing of thermophysical information can 
be achieved by hybridizing the computing operations, synthesizing the functions of digital and analog technology [ 1-6]. 
From this we can draw the second conclusion that an automated complex oriented toward the processing of thermophysical 
information should be constructed as a hybrid (analog-digital) system. By including analog modules in a computation 
process based on the convenient and universal principles of digital programming, we can substantially increase the speed of 
the system, both because various mathematical operations can be performed in parallel and because it becomes possible to 
carry out the calculations in real time or even on an accelerated time scale. 

The analog modules needed for the calculations can be obtained with the aid of an active analog computer. If high- 
speed analog computers (with periodization of the solutions) are used, the integration time is reduced to tens of micro- 
seconds, which is comparable to the time required for one elementary operation on modern digital computers. It is also 
important to emphasize that if a sufficiently large amount of equipment is used, the time required for the analog calcula- 
tions is relatively independent of the magnitude of the problem. The use of this property in combination with the known 
advantages of digital technology (such as the high accuracy of operation, the high level of automation of the computer, the 
ample logical possibilities, the capability of long-term memory storage of practically any amount of digital information) 
makes it possible to construct highly effective computing systems. In such systems the analog and digital parts are combined 
by means of linkages which include analog-digital and digital-analog converters. The digital computer is used for controlling 
the analog calculations and calculating the scales, coefficients, initial conditions, and control data. 

In [6] we described a hybrid automated system for thermophysical investigations which consists of a two-level multi- 
machine complex made up of general-purpose digital and analog processors. 

II. The transition to hybrid computation requires a certain amount of rethinking of calculation methods and the 
construction of special algorithms for solving direct and inverse heat-exchange problems. 

We shall consider the use of a hybrid computing system (HCS) for solving boundary-value inverse heat-conduction 
problems (IHCP). A preliminary analysis shows that the most desirable method is to hybridize the calculations for the 
solution of the inverse problems in extremal formulations regularized by A. N. Tikhonov's method and according to the 
iterative method discussed in [7-11 ]. 

Boundary-Value IHCP Regularized by A. N. Tikhonov's Method. In [12] we showed that the regularized formulation 
of a boundary-value inverse problem with constant coefficients in the heat-conduction equation is equivalent to the algebraic 
system 

B(~)u- D(~), (1) 

where B(c0, D(a) - the matrix dependent on the numerical parameter ~ and the right side of the equation - are obtained 
by minimizing the finite-dimensional analog of the regularizing functional, and u is the vector of the desired parameters - 
time-dependent values of the heat-flux density or the temperature on the boundary of the body. The regularization 
parameter a, which determines the degree of smoothness of the desired results, is selected by a prescribed rule which 
harmonizes the precision of the initial data with the discrepancy in temperature. 

In the digital realization of the algorithm, the main expenditure of machine time is required for the repeated solution 
of the system (1) when the values of the parameter ~ are varied. The machine time increases with the order of the system - 
the dimension of the reconstructed vector u. The computation time can be shortened and made practically independent of 
the dimension of u by using a hybrid computing system. To do this, we used a known method of formulation taking 
account of the symmetry and positive definiteness of the matrix B. Following this method, we pass to a system of ordinary 
differential equations 

du(t) (2) d-T + B (,~) u(t) : o (~), t - +  o,,, 
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where t is a new independent variable (machine time). The initial condition u(0) is chosen fairly arbitrarily. 

In the limit as t ~ ~ the vector function u(t) will converge to some approximate regularized solution of  the inverse 
problem depending on the given value of  o~, i.e., problem (2) is equivalent to formulation (1). The time required for reach- 
ing the steady state is determined by the chosen value of  the accuracy of  the entry of  the solution into a stationary regime, 
i.e., a value of  e such that u(t) no longer changes in value. 

The integration of  differential equations is a typical operation for an active analog computer, and an analog solution 
of system (2) can be obtained quite rapidly. The functions of information storage and the preparation of  information for 
the following cycle of  the analog simulation, corresponding to a different value of  a, are performed on the digital computer. 
It should be noted that when a change is made to another value of  or, the scheme of  the analog equipment remains the 
same, and there are likewise no changes in its parameters except for those coefficients which correspond to three or five 
diagonals of  the matrix B, depending on the order of regularization adopted for the problem. 

In the same way, we can solve regularized algebraic systems for each spatial layer of the difference network in a 
numerical algorithm for solving a nonlinear IHCP, which was considered in [ 13]. 

Hybrid Calculation of  the Coefficients of a Regularized System. The above-described hybrid approach to the deter- 
mination of an approximate solution of  a linear inverse problem assumes that analog computers will be used onty for simulat- 
ing system (2), while the initial data for each analog cycle of  calculation are found by a purely digital method. It is possible 
to construct a hybrid algorithm for solving a given IHCP in which the calculation of  the coefficients and the right sides of  
(2) is carried out by extensive use of the analog part of  HCS. We shall show this by using the example of  the following 
problem: 

OT O2T " 
- - a - -  , O . < x < b ,  O < ' r ~ ' r , , , ,  (3 )  

& Ox z 

T(x, O) = O, T(O, ~:) -~[ (~), - -  ;~ OT(O, ,__~) == Q(~), (4) 
0x 

T (b, "q =: u(~), 

where fir) and Q(r) are known functions and u(r) is the desired function of  the surface temperature of  the body. 

We shall use one of  the variants of  the method of  straight lines, in which the space coordinate is considered continu- 
ous, while the time coordinate consists of  a set of  discrete points ri, i = 1, m, with an equal step At. Replacing the time 
derivative by .the relation 

OT Ill"" T i (x) - -  T~_t (x) 
0w Aw ' 

where T~(x)=T(x,  ~i) , we arrive at the following approximation of  the problem (3), (4); 

daTi(x) 1 T~(x):: --1 Ti_~(x) O < x < b ,  i=-1, m, (5) 
dx z a k  w aA'r 

T O (x) O, Ti(O) fi, dTi(O) Qi = =  = : :  , f P i ~  , 

dx 

Ti(b) : u i - - ? ,  [ - -  1, nz. 

We must determine the quantities u ,  n = 1, 2, ..., m, from the condition that we must have a minimum of the regularized 
discrepancy 

m m 

lu] = ~ [T~(O) - - f i ]  2 -f- ~ (ui--ui_O 2, 
i = l  i = 1  

where the temperatures Ti(0) are obtained from the solution of  system (5) for the given vectors of  the boundary conditions - 
the known vector ~=[qh, % .. . . .  %d v and the variable vector n=[u~, u~ .. . . .  u,,] T . 

Setting the derivatives 3~/0u n equal to 0, we write the necessary extremum conditions in the form 

r n  

.~  [Ti(0)--/i] 
/ ~ n  

aTe(0) 
+ a(--u,,_l+2u,~--ttn+O=O, n : :  1,m. (6) 

Oun 
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In o rder  to find tM partial derivatives ~Ti(0)/~u ~ (the sensitivity coefficients), we proceed as follows. We differentiate the 
right and left sides of  Eq. (5) with respect to u and interchange the order of  differentiation with respect to x and u .  
Introducing the notat ion tp~(x) = OT~(x)/Ou,. we obtain 

de~i,(x) 1 1 ~i_t.,,(x). (7) 
dx z aA'c g~i~(x) . . . .  aA4 .... 

The solution of (7) must satisfy the boundary conditions 

dt~i'~(O)dx - O, ~['i,db). =: {1,0, i=/=i =n,n 

n-~= 1, .---z, i = n, m. 

(8)  

It is not  difficult to see that 

1~t  t = =  l[r., e : =  . . . = =  l~mm, 

1~2t  = ~33'-" . . . . . . . .  ~m,ra-t, 
. . . . . . . . . .  , . . . . . .  

~['~i = ~i+~,,- . . . .  ~['i+J,J+l . . . .  = ~ . . . . .  ~+~- 

Thus, to determine all the derivatives @~ (0)=OT~ (0)/0U n , w e  must solve the two-point  boundary-value problem (7), (8) 
only m times - for n = 1, i = 1, 2, ..., m. It  is natural to use the analog part of  the hybrid computing system for this 
purpose. Let us consider this question in more detail. 

Problem (7), (8) is a linear boundary-value formulation in which we are trying to find the solution of a system of 
differential equations in some interval on the basis of the conditions determining the connection between the values of  the 
solution and its derivatives at the endpoints of  the interval. One of  the effective methods for finding this solution, which 
enables us to overcome the difficulties associated with the existence of  an unstable integration regime on the analog 
computer  for small values of AT, is the reduction of  this formulation to a problem with initial conditions by the factoriza- 
tion method. 

We introduce the notat ion g(x)=~,~(x),  g - 1 , h(x) 1 ~-1 .~  (x) and rewrite the boundary-value 
problem (7), (8): aAT aAT 

L ( g ) ~ y " - - g y : h ,  .rE(0, b), (9) 

y' (0) = 0, (10)  

g (b) = c, (11) 

where c = 0 or 1, depending on the relation between the numbers i and n. 

To solve the problem (8)-(11), we use one of  the factorization methods indicated in [ 14]. We construct the sequence 
of functions u k and v k, k = 1, 2, ... , setting v o = 0 and using the differential equations 

dv~ ~-V'Zv~- h 
dx 2 l / g -  ' (12) 

dwh V i f "  wl~ = h (13) 
dx 2 

with the initial conditions 

dvldO) = dwh_i(O) , ~vk(b) = c + v1,(b). 
dx dx 

The function Yk = Wk - -  Vk' as can readily be verified, satisfies Eq. (9) and the condit ion (11). Furthermore,  it  was shown 
in [14] that  as k -+ cr the sequence Yk converges to the solution of the boundary-value problem (9)-(11). The rate of  
convergence of  this iterative process is high (the desired accuracy is achieved after several iterations), and it increases with 
the length of  the interval [0, b]. 

In carrying out this process, we do not  encounter any problems, provided that we maintain the stability of  the 
calculation. 

I f  we introduce a new independent  variable x '  = b - x, then (13) is transformed into the equation 

dwk(x') V~-w~(x')= h(x') 
dx' 2 ]/-g-- " (14) 
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with the initial condit ion 

wkl,'=0 = c + vhl,'=o. 

As a result, Eq. (14) is integrated in the same direction as (12) - from left to right. These operations are assigned to the 
analog computer  when the hybrid algorithm is set up. 

It should be noted that a stable analog solution of  the initial equation (9) can also be carried out  by using a some- 
what different variant of the factorization method,  known as the decomposit ion method [15]. 

In order to solve system (6) for u n, n = 1, 2 . . . . .  m, it is necessary, in addition to the sensitivity coefficients ~in(O), 
to find the connection of the quantities T~]~=0 with the desired values of  u n . It  is not  difficult to show that we finally 
obtain the following formulation for the regularized algebraic system: 

where 

2ulPz,~+a(--u,~-i + 2un--u~+t) = b,~, n = I ,  m, 
l = l  

(15) 

P,o= Z (0) = (0)r, 

To Eq. (15) we must add two conditions determining the values u 0 and u m § 1, e.g., from the approximation of the deriva- 
tive du/dx at the points r = 0, r m [12]. 

We calculate the sums in the determination of the coefficients Ptn and b n and also "remember"  the resulting values 
by using the digital computer.  The solution of  the regularized algebraic system for different values of the parameter  a can 
be carried out by means of the hybrid computer  using the convergence method.  

Remark I. In the above discussion, we considered the boundary temperature as the desired function; however, the 
algorithms given can be carried over practically completely to the case of  reconstructing the heat flux density q (x,~)= 
- -~(dr~(b) /dx) .  

Remark II. Without any theoretical difficulties, we can extend the proposed hybrid method of  solving IHCP to a 
heat-conduction equation with a convective term and distributed heat sources, including the case when the coefficients and 
the source are functions of the coordinate x. In these cases the number of  sensitivity coefficients can also be reduced from 
m(m + 1)/2 to m. The solution of  the resulting m boundary-value problems for determining the sensitivity coefficients is 
carried out  on the HCS according to the scheme described above. 

In the case when the coefficients and the source depend not  only on x but  on r, we must calculate m(m + 1)/2 
sensitivity coefficients. 

Solution of  Inverse Problems by Iterative Methods. On the basis of iterative gradient methods for minimizing the 
temperature discrepancy, we have worked out efficient algorithms for solving linear and nonlinear IHCP [7-10]. It is easy 
to construct iterative processes which yield an approximation to the desired function not  only as an average but also taking 
account of  the necessary degree of  smoothness of  the solution [9, 10]. 

The parts of  the iterative algorithms which are most  difficult to set up for digital calculation are the procedures for 
solving boundary-value problems for the heat-conduction equation which determine the temperature in the body and the 
temperature increments, as well as the procedure for finding the discrepancy gradient by solving the conjugate boundary- 
value problem. Therefore, the speed of the iterative algorithms may be considerably increased if the functions of integrating 
these boundary-value problems are assigned to the analog part of  the HCS. 

Rules for Halting the I teration for Gradient Methods of Minimization. The results of  the solution of various inverse 
problems in heat conduction show that iterative processes of the steepest-descent type and the conjugate-gradients type are 
stable with respect to approximation errors and errors connected with the computer  mechanization of  the algorithms. This 
conclusion is obtained both for the use of  digital computers and for the use of  HCS. Beginning with a poor  initial approxi- 
mation, these iterative processes converge rapidly at first, and afterwards (after four to seven iterations) they become much 
slower. In most cases it is possible to find the shape of  the desired function, which changes little thereafter. This behavior 
of the approximations makes it possible to conduct  a search for the necessary element on the basis of  the condit ion that 
the iterative process converges if the input data are unperturbed or are subjected to preliminary smoothing. 

However, if  the initial data include fluctuation errors, the behavior of  the iterative process constructed by the steepest- 
descent or conjugate-gradients method c a n b e  tentatively subdivided into stages: the finding and correction of the main 
structural features of  the desired function followed by the gradual development of  oscillations in the solution. In this case 
the time when the process should be stopped can be determined by the discrepancy criterion, i.e., we must introduce an 
admissible level of  minimization of  the target functional and harmonize the number of  iterations with the accuracy of  the 
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specification of the initial data, in order to stop the process somewhere at the junction of the first and second stages. For 
linear formulations of the problem, this approach may be justified by rigorous arguments (see [ 11 ]). 

It should be noted that a sufficiently accurate determination of the admissible level of minimization of the dis- 
crepancy is not always possible. In this situation we may resort to two other empirical methods for halting the iteration 
process which do not require a knowledge of the value of the error in the initial data. To use them, we must know (at 
least) two independent random realizations of the measured temperature T*(r) and T*(r) at some point inside the body, 
and, as a rule, the inverse problem is additionally defined by specifying at some other point of the body a supplementary 
condition Concerning the temperature or the heat-flux density. 

Method I. We construct two iteration sequences for the desired value, u~(z) =u  h ('C)lrf and u~(~) = u h (x)lr~', for two 
known temperature realizations, respectively. In these sequences we take different initial approximations u~ and u~ 
Among the elements u~(r) and uk(r) we try to find the functions url (r) and Utr(r) which are closest to each other in the 
sense of minimizing the quantity Ilui - -  u211 . One of these functions (or the result obtained by averaging them at each 
instant of time) is taken as the required approximation to the desired solution. Analysis of the calculations has shown that 
when we choose initial estimates which are far from each other, this method yields entirely acceptable results, which are 
close to the results of the solution of the IHCP obtained in accordance with the iterative discrepancy method. 

Method II. The method proposed in [16] for choosing the regularization parameter in A. N. Tikhonov's method can 
be extended to the iterative algorithms. In this case we construct an iterative sequence {u~ (z)} with input data in the form 
of one of the random realizations of the temperature, e.g., T*(r). The necessary number of iterations is determined from 
the condition that the temperature T~(r), calculated for u~(r), must be as close as possible to the other input function T~(r): 

�9 k * r : IIT~--T~II = mmllTl --T211. 
k 

l In We can thus find u~(r) by "fitting" T~(r) to the realization T~(r) and then average the resulting functions ur~ and u 2 . 
the solution of the methodological examples, method II yielded approximately the same results as method I. 

Remark. From the practical viewpoint the two random realizations of the temperature T*(r) and T*(r) can be 
obtained by means of two different temperature sensors. In the case of a single experimental curve T*(r), we select two 
time series, {T;,} and {T~e}, from it. To do this, we use different steps for the discretization of the continuous measurement 
process, as well as a "shift" of the time networks of temperature recording. In both cases we must, on the one hand, avoid 
correlated data (since the useful signal is usually burdened with nonwhite noise) and, on the other hand, avoid the effect of 
masking the frequencies of the useful signal. 

In the foregoing discussion we have considered some aspects of the hybrid solution of boundary-value IHCP. It is 
also possible to construct effective hybrid methods for solving other types of inverse problems, specifically inverse problems 
in heat exchange in technological systems, used for identifying the parameters of thermal models of these systems. By 
using HCS, we can also reduce considerably the amount of time consumed in solving direct heat-conduction problems 
connected with the calculations of temperature fields in structures and heat-shielding coverings, which may be particularly 
effective in the choice and optimization of the parameters of a technological system being designed, when such problems 
must be solved repeatedly. 
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AUTOMATION OF THE PRIMARY PROCESSING OF DATA 

OF A THERMAL EXPERIMENT 

N. V. Kerov and B. M. Pankratov UDC 536.24.083 

The problems involved in automating the processing of experimental data are considered. Primary-processing 
algorithms based on methods of analyzing nonstationary random processes are described. 

Considerable attention is being given at present to designing automated data-processing systems for thermal experi- 
ments. The need to construct such systems is obvious. Automated data-processing systems enable one to eliminate manual 
operation, which to a large extent affects the operational capability and accuracy with which the results can be processed. 
Until recently "stationary" experiments under steady-state heat-exchange conditions have largely been carried out when 
studying thermophysical processes. This approach has simplified the theoretical methods by which the experimental data 
is processed. The amount of computational work involved was, as a rule, small. Incidental computer calculations to a large 
extent met the requirements of the investigations. The need to solve more detailed and more complex experimental problems 
when studying different nonstationary thermal regimes [ 1 ] has necessitated the development of more complex methods, 
which considerably increase the complexity and the amount of processing work involved. Manual or incidental computer 
calculations now are not only not sensible but in many cases are generally impracticable. Hence, an automated data- 
processing system for thermal experiments should improve the quality, increase the accuracy and information content of 
the investigations as a result of a more complete and fundamental analysis of the measurement results, increase the opera- 
tional capability of the experimental data processing, intensify the research, and reduce the cost of typical multiple experi- 
ments and tests. In addition, an automated data-processing system widens the possibility of rational planning of a thermal 
experiment, enables the processing and analysis of the data to be flexibly organized, and enables one to correct and 
simultaneously process and store large amounts of data. An important feature also is that an automated system eliminates 
any subjective approach when decoding experimental dataand when estimating the characteristics obtained. 

The presence in a thermal experiment of a large number of unconnected factors which affect the physical processes 
being investigated, and distortion of the useful data by the recording apparatus lead to the need for careful analysis of the 
results obtained. Consequently, it is necessary to organize the automated processing procedure in such a way as to reduce 
the loss of useful information to a minimum. 

We propose the following principles for constructing the software of an automated data-processing system. Processing 
is divided into three stages: preparation of the experimental data, and primary and secondary processing. The preparation 
involves a specific apparatus part of the automated data-processing system, and at the end of the first stage matrices of the 
initial data are formulated in a form convenient for introduction into the computer of the automated data-processing system. 
Primary processing involves a statistical analysis of the experimental data [ 2, 3 ], while secondary processing involves solving 
the main applied problems. 
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